Для объяснения механизма восприятия высоты как простых, так и сложных звуков используются две теории: "теория места" и "временная теория".
3. Теория места
Теория места при восприятии высоты основана на способности базилярной мембраны выполнять частотный анализ сложного звука, т.е. действовать как спектральный анализатор. Базилярная мембрана организована тонотопически, т.е. каждый тон имеет свою топографию размещения. Как уже было указано выше, звуковой сигнал вызывает появление на мембране бегущей волны:
но специфика возбуждения состоит в том, что максимум смещения этой бегущей волны располагается в разных местах базилярной мембраны - низкие частоты имеют максимум смещения вблизи вершины мембраны, высокие - вблизи овального окна. Каждая частота имеет свое место максимума возбуждения на мембране:
В зависимости от спектрального состава на базилярной мембране возбуждаются различные участки. Возбуждаются волосковые клетки, находящиеся на этом месте, и их электрическая активность сообщает мозгу, какие частоты присутствуют в спектре. Таким образом, частота тона представлена в коде, основанном на том, нейроны каких участков активны, а каких - молчат. Физиологические исследования показывают, что тонотопическая организация нейронов сохраняется во всех отделах мозга, вплоть до отделов слуховой коры. Логично допустить, что распознавание частоты и распознавание высоты есть результат тонотопического кодирования - в этом и заключается теория места.
При действии синусоидального сигнала в слуховом нерве формируется "образец возбуждения" - скорость разрядов нейронов как функция места на базилярной мембране. При этом пик этого образца движется вдоль мембраны при изменении частоты. Интересно отметить, что для того, чтобы слух различил два тона по высоте, необходимо, чтобы на базилярной мембране максимум смещения, соответствующий данным частотам, сместился всего на 52 мкм (если выразить в мелах, то одна градация высоты равна 3,9 мела).
Таким образом, можно считать, что периферическая слуховая система содержит банк полосовых фильтров ("слуховых фильтров") с перекрывающимися полосами (Рис. 8). Их ширина свыше 1кГц составляет примерно 10-17% от центральной частоты (например, на частоте 1000 Гц ширина полосы составляет 160 Гц). С шириной слуховых фильтров связано известное понятие "критической полосы" - внутри этой полосы звуковая информация интегрируется слухом; при выходе за пределы этой полосы происходит скачкообразное изменение слуховых ощущений, и это подтверждается экспериментами по маскировке, громкости, фазовой чувствительности и др.
При восприятии музыкального звука в соответствии с теорией места для слуховой системы существуют три возможности определения высоты:
Метод 1: локализовать место фундаментальной частоты и по нему определить высоту тона;
Метод 2: найти минимальную частотную разницу между соседними гармониками, которая равна фундаментальной частоте: [(n+1)f0)-(nf0)]=(nf0)+(1f0)-(nf0)=f0, где n =1,2,3… и принять ее за основу при распознавании высоты;
Метод 3: найти общий наибольший сомножитель, который получается при делении всех гармоник на последовательные целые числа, и использовать его как базу для определения частоты. Первой была предложена теория, по которой ощущаемая высота соответствует частоте только в том случае, если в звуковой волне присутствует энергия на этой частоте (второй закон Ома). Отсюда следовало, что присутствие фундаментальной частоты является обязательным для определения высоты звука. Первые сомнения в этой теории появились, когда стало возможным электрическим путем синтезировать спектры сложных звуков. В 1940 Шутен продемонстрировал, что ощущение высоты тона (сложной периодической волны) не изменится, если вырезать в музыкальном тоне фундаментальную частоту:
Из этого следовало:
- присутствие фундаментальной частоты не обязательно для восприятия высоты;
- низшая частота не всегда является основой определения высоты.
Этот эксперимент получил название "феномен пропущенной фундаментальной" и доказал, что метод 1 не может служить единственной базой для определения высоты сложного тона, хотя он работает для большинства музыкальных, в том числе вокальных звуков.
Метод 2 дает возможность определить высоту тона по определению позиции соседних гармоник, даже если фундаментальная частота отсутствует. Для большинства музыкальных звуков соседние гармоники обычно присутствуют. Слуховая система, оценивая положение их максимумов на базилярной мембране, вычисляет частотную разницу между ними и по ней определяет высоту. Однако с помощью современных технических средств можно создать ситуацию, которую объяснить с помощью этого метода невозможно. Например, подаем звук, в котором присутствуют только нечетные гармоники 1f0, 3f0, 5f0, 7f0, например, 100, 300, 500, 700 Гц и др. Если фундаментальная частота есть в спектре, то слух определяет высоту по ней f0 = 100 Гц. Если ее вырезать, то расстояние между гармониками останется 2 f0, но слух продолжает определять высоту тона, равную фундаментальной f0=100 Гц.
Метод 3 позволяет объяснить и пропущенную фундаментальную и наличие только нечетных гармоник, т.к. от отсутствия каких-то гармоник общий наибольший сомножитель 100 Гц не меняется (см. таблицу). Этот метод позволяет также объяснить восприятие слабого ощущения высоты тона у колоколов и других источников квазипериодических тонов.
Механизм места разворачивает данную гармонику, если критическая полоса ее слухового фильтра, построенного на ней как на срединной частоте, достаточна узкая и соседние гармоники внутрь этого фильтра не попадают. Если гармоники находятся настолько близко по частоте друг от друга, что внутрь одного слухового фильтра попадает несколько гармоник, то они не разворачиваются. Какой бы ни была фундаментальная частота, слуховой механизм разворачивает только первые 6-7 гармоник - именно они и являются определяющими при определении высоты звука. Теория места создает базис для понимания того, как можно определить высоту путем анализа гармонического ряда, но эта теория не может объяснить ряд проблем, например, очень высокая точность определения высоты звука для тонов, чьи частотные компоненты не разворачиваются (т.е. звуки с гармониками выше седьмой).
4. Временная теория
Временная теория восприятия высоты базируется на анализе временной структуры звуковой волны (теория места на ее спектральном анализе). Эта теория использует синхронизацию разрядов нейронов органа Корти с фазой колебания базилярной мембраны (эффект запирания фазы). При смещениях определенной точки мембраны в сторону расположения волосковых клеток в них возникает электрический потенциал, при смещении в противоположную сторону - потенциал отсутствует. Благодаря фазовому запиранию время между импульсами в любом отдельном волокне будет равно целому числу 1, 2, 3... умноженному на период в основной звуковой волне. Нервные волокна кооперируются, чтобы кодировать частоты выше 300 Гц.
Основа временной теории - анализ формы волны в различных частях базилярной мембраны. Если рассматривать механизм частотного анализа на базилярной мембране как работу линейки фильтров различной ширины, то форма волны звукового сигнала, выходящего из этого набора фильтров, должна иметь вид, показанный на рисунке:
Например, если анализируется музыкальный тон с основной частотой 200 Гц, то выход из фильтра с центральной частотой 200 Гц имеет форму синусоидальной волны, т.к. эта гармоника разворачивается анализирующим фильтром. Аналогично разворачиваются этими фильтрами и все гармоники до пятой (около 1300 Гц). На выходе они имеют синусоидальную волну. Шестая гармоника (около 1560 Гц) имеет уже вариации амплитуды, но индивидуальные циклы еще видны. Волновая форма выходного сигнала для фильтра, центральная частота которого (в данном примере) выше шестой, не синусоидальная, т.к. гармоники не разворачиваются индивидуально, демонстрируя, что частотный диапазон полосового фильтра шире, чем расстояния между ними. По меньшей мере две гармоники комбинируются на выходе этого фильтра. Известно, что если две частоты находятся достаточно близко друг от друга, между ними возникают биения, т.е. одно колебание со средней частотой, равной разности частот. В данном случае, когда взаимодействуют две гармоники, этот период определяется фундаментальной частотой T=1/f0. Таким образом, период всех волн, выходящих после фильтров с центральной частотой выше шестой гармоники и состоящих из соседних гармоник, будет одинаковым и равным 1/f0.
Минимальное время между импульсами от различных мест на базилярной мембране определяется периодом волны, выходящей от соответствующего фильтра. Для мест, которые соответствуют частотам от основной до шестой гармоники, минимальное время равно периоду данной гармоники. Для мест, соответствующих более высоким гармоникам, промежутки между импульсами равны периоду огибающей, т.е. основному тону:
Таким образом, выше шестой гармоники разряды нейронов синхронизированы с формой огибающей, и период разрядов совпадает с периодом для фундаментальной частоты. Иными словами, для всех гармоник периоды разрядов или равны, или отличаются в целое число раз от частоты основного тона.
Это основа временной теории восприятия высоты тона: мозг определяет периодичность разрядов и по ним восстанавливает частоту основного тона.
Восприятие музыкальной высоты связано с оценкой временной формы звукового сигнала (за счет использования эффекта "фазового запирания").
Временная теория позволяет понять, как найти фундаментальную частоту на основе анализа временных интервалов между нервными импульсами от различных мест на базилярной мембране и по ней определить высоту тона. Однако, временная теория не объясняет восприятия высоты тона на частотах выше 5000 Гц, т.к. эффект фазового запирания не срабатывает на этих частотах. Вероятно, в этой области частот меняется механизм восприятия высоты тона.
Необходимо отметить, что на частотах выше 5 кГц в слуховой диапазон (до 20 кГц) попадают только две-три слышимых гармоники, этого слишком мало для слуха, поэтому, как уже было показано выше, восприятие высоты тона существенно обедняется и практически заканчивается восприятие музыкальной высоты (chroma pitch) тона (интонации). Вероятно, по этой причине, которая была интуитивно известна музыкантам, на большинстве музыкальных инструментов (рояль и др.) клавиатура заканчивается в области 5 кГц. На органе есть трубы, которые дают тон 8 кГц, но они употребляются только вместе с другими.
5. Современная теория восприятия высоты тона
Согласно современным теориям мозг принимает информацию от периферийной слуховой системы как за счет индикации места (частотный анализ), так и за счет информации о форме звуковой волны (временной анализ). Самостоятельно каждая теория, по-видимому, не может объяснить восприятие высоты полностью, т.к. та и другая информация передается по одним и тем же нервным волокнам.
Современная модель для восприятия высоты тона, объединяющая оба метода, показана на рисунке 11:
сначала идет фильтрация сигнала по частоте с помощью развертки по месту, затем - анализ по межимпульсным интервалам (до шестой-седьмой гармоники они соответствуют периоду каждой гармоники), выше - по периоду огибающей. Поскольку период огибающей равен периоду основной частоты, то здесь различие высоты тона определяется только по месту возбуждения. Так определяется общий период, и по нему данному звуку присваивается определенная высота. Таким образом, обе теории дополняют друг друга.
Анализ восприятия высоты музыкального тона с помощью предложенной модели позволил получить ряд интересных результатов:
- для музыкальных тонов с основной частотой от 100 до 400 Гц (с уровнем звукового давления не менее 50 дБ) основную роль в определении высоты тона играют первые пять-шесть гармоник (если их уровень превышает 10 дБ), т.е. те гармоники, которые разворачиваются слуховыми фильтрами;
- звуковые сигналы, содержащие только очень высокие гармоники (свыше двадцатой), не вызывают ощущения высоты тона;
- музыкальные сигналы, содержащие очень низкие частоты (с основной частотой ниже 50 Гц, например, звуки органа) вызывают ощущение высоты тона только по гармоникам, т.к. такие низкие частоты не вызывают смещений базилярной мембраны - они на ней не размещаются, им не хватает места. При этом наиболее существенную роль играют пятые-шестые гармоники;
- основная частота звука, если она выше 1000 Гц, является доминантной компонентой в определении высоты тона;
- музыкальные звуки, содержащие только неразвернутые гармоники (свыше шестой) могут дать ощущение высоты тона по огибающей, при этом слух дает достаточно тонкую дифференциацию сдвига максимума огибающей, т.е. точно чувствует высоту.
- фазовые соотношения различных гармоник в музыкальном сигнале оказывают влияние на восприятие высоты, т.к. их изменение приводит к изменению структуры огибающей для высших неразвернутых гармоник. Для музыкальных сигналов, содержащих много низких и высоких гармоник, изменение фазовых соотношений может привести к улучшению четкости восприятия высоты, не вызывая ее сдвига (т.к. они не влияют на оценку низших развернутых гармоник). Для сигналов, содержащих в основном высокие гармоники, изменение их фазы может вызвать сдвиг высоты тона и изменение его четкости, т.к. может привести к сдвигу пиков в огибающей, по которым и определяется высота тона.
Таким образом, фазовые соотношения в музыкальном сигнале оказывают существенное влияние на звуковысотные отношения, что особенно важно учитывать в звукорежиссерской практике.
6. Высота тона и центральный процессор
Восприятие высоты тона для сложных музыкальных сигналов, как указано выше, начинается с анализа в периферической слуховой системе, где производится их частотный и временной анализ, а затем полученная информация передается в высшие отделы мозга - "центральный слуховой процессор", где полученная информация определенным образом группируется и осмысливается.
Мозг группирует несколько тонов (гармоник) с одинаковым частотным интервалом в одно ощущение высоты тона. Это принципиальное свойство слухового процессора (высших отделов коры головного мозга): из сложного внешнего звукового мира он выделяет звуки и группирует их по определенным признакам: по месту, по времени начала и конца, по периодичности повторений и т.п. Это связано с тем, что кратковременная память оперирует только шестью-семью символами и без группировки мозг не может принимать быстрых решений.
Современная психология утверждает, что мозг мыслит образами. По-видимому, музыкальные звуки также запоминаются в виде некоторых гармонических эталонов (шаблонов - template), которые формируются в детстве, аналогично звукам речи.
В настоящее время принята гипотеза, что центральный процессор, получив информацию от периферической слуховой системы о наличии компонент с кратными периодами в музыкальном звуке, группирует их и сравнивает с гармоническим шаблоном, в котором имеются все последовательные гармоники. Для каждого входного сигнала подбирается по фундаментальной частоте гармонический шаблон, который ему лучше подходит. В соответствии с этой моделью наиболее соответствующая фундаментальная частота подобранного шаблона и будет воспринимаемой высотой тона. Если два шаблона с разными фундаментальными частотами подходят к данному сигналу, можно ожидать услышать или неопределенную высоту или две высоты. В случае отсутствия фундаментальной частоты, сравнение производится по отдельным гармоникам. Если удается подобрать хотя бы несколько гармоник, которые подходят под эталон, то по повторяющемуся интервалу между ними присваивается высота тона (виртуальная высота тона слышится, например, в звуке колоколов). Наиболее важными для синтеза ощущения высоты тона являются первые три - шесть развернутых гармоник. Компоненты сигнала, которые ведут себя аномально (например, одна гармоника включается-выключается или резко отличается от шаблона), выделяются центральным процессором и им присваивается отдельная высота.
Имеется много доказательств в поддержку данной гипотезы: например, при подаче разных гармоник в разные уши через телефоны (600 Гц в одно ухо и 800 Гц в другое), отчетливо слышен разностный тон высотой, соответствующей частоте 200 Гц, т.е. центральная система синтезирует высоту из гармоник в разных ушах. Другое доказательство, когда гармоники предъявляются неодновременно: при последовательном включении третьей, четвертой и пятой гармоники по 40 мс с интервалом10 мс, отчетливо слышался низкий тон с фундаментальной частотой и т.п.
Таким образом, в соответствии с этой моделью, гармоники собираются вместе, сравниваются центральным процессором с гармоническим эталоном (шаблоном) и по нему синтезируется высота музыкального тона.
Говоря о высоте комплексного тона, можно сказать, что "высота - великий консолидатор". Начиная с большого количества гармоник, процессор высоты объединяет их вместе в одно ощущение высоты. Слуховая организация определения высоты - основная часть осмысления звуков окружающего мира.